Ultra-fast and energy-efficient sintering of ceramics by electric current concentration
نویسندگان
چکیده
Electric current activated/assisted sintering (ECAS) techniques, such as electrical discharge sintering (EDS) or resistive sintering (RS), have been intensively investigated for longer than 50 years. In this work, a novel system including an electrically insulated graphite die for Spark Plasma Sintering (SPS) is described, which allows the sintering of any refractory ceramic material in less than 1 minute starting from room temperature with heating rates higher than 2000°C/min and an energy consumption up to 100 times lower than with SPS. The system alternates or combines direct resistive sintering (DRS) and indirect resistive sintering (IRS). Electrical insulation of the die has been achieved through the insertion of a film made of alumina fibers between the graphite die and the graphite punches, which are protected from the alumina fiber film by a graphite foil. This system localized the electric current directly through the sample (conductive materials) as in DRS and EDS, or through the thin graphite foil (non-conductive materials) as in IRS, and is the first system capable of being used under EDS or RS conditions independently combining current concentration/localization phenomena.
منابع مشابه
Effect of Calcination Kinetics and Microwave Sintering Parameters on Dielectric and Peizo-Electric Properties of(K0.5Na0.5) NBO3 Ceramics
An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichio...
متن کاملStudy on appropriate and modified conditions for flash sintering process by simulation modeling
Flash sintering is one of the newest techniques for sintering ceramics to near full density. It occurs in an appropriate combination of temperature and electric field. Temperature measurement is one of the most serious challenges in this process. In the present study, we tried to model a flash sintering process of 8YSZ and 3YSZ with finite element method to make an assessment for temperature di...
متن کاملCold Sintering Process: New sintering technique for fabrication of nano-structured ceramics below 300 °C - A review
Due to the conventional understanding of sintering phenomenon in ceramic materials, considering two words of “cold” and “sintering” together may arise a doubt to a ceramic engineer since the usual sintering process has been accompanied by a heating regime at elevated temperatures. Recently, a new technique called Cold Sintering Process (CSP) has been introduced and developed as an ultra-low tem...
متن کاملEffect of Silicon Carbide and graphite additives on the pressureless Sintering mechanism and microstructural characteristics of Ultra-High Temperature ZrB2 Ceramics Composites
The effect of SiC content, additives, and process parameters on densification and microstructural properties of pressureless sintered ZrB2– (1–10 wt %) SiC particulate composites have been studied. The ZrB2–SiC composite powders mixed by Spex mixer with 1-2wt% C (added as graphite powder) and CMC have been cold-compacted and sintered in argon environment in the temperature range of 1800–2100ºC ...
متن کاملThe effect of composition on flash sintering parameters of varistors based on ZBS
Flash sintering is one of the latest sintering processes of ceramics, which has recently attracted the attention of researchers due to its high sintering speed and significant energy reduction. An essential feature of successful flash is negative temperature coefficient (NTC) semiconductor behavior. In this research, the flash sinter process of ceramic varistor based on ZnO-Bi2O3-Sb2O3 (ZBS) ha...
متن کامل